Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Med Virol ; 95(6): e28863, 2023 06.
Article in English | MEDLINE | ID: covidwho-20238042

ABSTRACT

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Animals , Humans , Mice , Rats , Acetamides , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/therapy , Disease Models, Animal , Mice, Transgenic , Quinazolines/pharmacology , Quinazolines/therapeutic use , SARS-CoV-2/genetics
2.
Antimicrob Agents Chemother ; : e0120122, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2117118

ABSTRACT

Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 µM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 µM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.

3.
iScience ; 25(10): 105068, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2007780

ABSTRACT

The molecular manifestations of host cells responding to SARS-CoV-2 and its evolving variants of infection are vastly different across the studied models and conditions, imposing challenges for host-based antiviral drug discovery. Based on the postulation that antiviral drugs tend to reverse the global host gene expression induced by viral infection, we retrospectively evaluated hundreds of signatures derived from 1,700 published host transcriptomic profiles of SARS/MERS/SARS-CoV-2 infection using an iterative data-driven approach. A few of these signatures could be reversed by known anti-SARS-CoV-2 inhibitors, suggesting the potential of extrapolating the biology for new variant research. We discovered IMD-0354 as a promising candidate to reverse the signatures globally with nanomolar IC50 against SARS-CoV-2 and its five variants. IMD-0354 stimulated type I interferon antiviral response, inhibited viral entry, and down-regulated hijacked proteins. This study demonstrates that the conserved coronavirus signatures and the transcriptomic reversal approach that leverages polypharmacological effects could guide new variant therapeutic discovery.

4.
Microbiol Spectr ; 9(1): e0047221, 2021 09 03.
Article in English | MEDLINE | ID: covidwho-1352541

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative agent of the coronavirus disease 2019 (COVID-19) pandemic, and the development of therapeutic interventions is urgently needed. So far, monoclonal antibodies and drug repositioning are the main methods for drug development, and this effort was partially successful. Since the beginning of the COVID-19 pandemic, the emergence of SARS-CoV-2 variants has been reported in many parts of the world, and the main concern is whether the current vaccines and therapeutics are still effective against these variant viruses. Viral entry and viral RNA-dependent RNA polymerase (RdRp) are the main targets of current drug development; therefore, the inhibitory effects of transmembrane serine protease 2 (TMPRSS2) and RdRp inhibitors were compared among the early SARS-CoV-2 isolate (lineage A) and the two recent variants (lineage B.1.1.7 and lineage B.1.351) identified in the United Kingdom and South Africa, respectively. Our in vitro analysis of viral replication showed that the drugs targeting TMPRSS2 and RdRp are equally effective against the two variants of concern. IMPORTANCE The COVID-19 pandemic is causing unprecedented global problems in both public health and human society. While some vaccines and monoclonal antibodies were successfully developed very quickly and are currently being used, numerous variants of the causative SARS-CoV-2 are emerging and threatening the efficacy of vaccines and monoclonal antibodies. In order to respond to this challenge, we assessed antiviral efficacy of small-molecule inhibitors that are being developed for treatment of COVID-19 and found that they are still very effective against the SARS-CoV-2 variants. Since most small-molecule inhibitors target viral or host factors other than the mutated sequence of the viral spike protein, they are expected to be potent control measures against the COVID-19 pandemic.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , RNA-Dependent RNA Polymerase/drug effects , SARS-CoV-2/drug effects , Serine Endopeptidases/drug effects , Animals , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Humans , South Africa , United Kingdom , Vero Cells , Virus Internalization/drug effects , Virus Replication/drug effects
5.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1303894

ABSTRACT

The global efforts in the past year have led to the discovery of nearly 200 drug repurposing candidates for COVID-19. Gaining more insights into their mechanisms of action could facilitate a better understanding of infection and the development of therapeutics. Leveraging large-scale drug-induced gene expression profiles, we found 36% of the active compounds regulate genes related to cholesterol homeostasis and microtubule cytoskeleton organization. Following bioinformatics analyses revealed that the expression of these genes is associated with COVID-19 patient severity and has predictive power on anti-SARS-CoV-2 efficacy in vitro. Monensin, a top new compound that regulates these genes, was further confirmed as an inhibitor of SARS-CoV-2 replication in Vero-E6 cells. Interestingly, drugs co-targeting cholesterol homeostasis and microtubule cytoskeleton organization processes more likely present a synergistic effect with antivirals. Therefore, potential therapeutics could be centered around combinations of targeting these processes and viral proteins.

6.
J Med Virol ; 93(3): 1403-1408, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196439

ABSTRACT

Drug repositioning represents an effective way to control the current COVID-19 pandemic. Previously, we identified 24 FDA-approved drugs which exhibited substantial antiviral effect against severe acute respiratory syndrome coronavirus 2 in Vero cells. Since antiviral efficacy could be altered in different cell lines, we developed an antiviral screening assay with human lung cells, which is more appropriate than Vero cell. The comparative analysis of antiviral activities revealed that nafamostat is the most potent drug in human lung cells (IC50 = 0.0022 µM).


Subject(s)
Antiviral Agents/pharmacology , Guanidines/pharmacology , SARS-CoV-2/drug effects , Animals , Benzamidines , Cell Line, Tumor , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Approval , Drug Repositioning , Humans , Inhibitory Concentration 50 , Lung , Microbial Sensitivity Tests , SARS-CoV-2/physiology , United States , United States Food and Drug Administration , Vero Cells , COVID-19 Drug Treatment
7.
Res Sq ; 2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-918844

ABSTRACT

Epidemiological studies suggest that men exhibit a higher mortality rate to COVID-19 than women, yet the underlying biology is largely unknown. Here, we seek to delineate sex differences in the expression of entry genes ACE2 and TMPRSS2 , host responses to SARS-CoV-2, and in vitro responses to sex steroid hormone treatment. Using over 220,000 human gene expression profiles covering a wide range of age, tissues, and diseases, we found that male samples show higher expression levels of ACE2 and TMPRSS2 , especially in the older group (>60 years) and in the kidney. Analysis of 6,031 COVID-19 patients at Mount Sinai Health System revealed that men have significantly higher creatinine levels, an indicator of impaired kidney function. Further analysis of 782 COVID-19 patient gene expression profiles taken from upper airway and blood suggested men and women present profound expression differences in responses to SARS-CoV-2. Computational deconvolution analysis of these profiles revealed male COVID-19 patients have enriched kidney-specific mesangial cells in blood compared to healthy patients. Finally, we observed selective estrogen receptor modulators, but not other hormone drugs (agonists/antagonists of estrogen, androgen, and progesterone), could reduce SARS-CoV-2 infection in vitro.

8.
Antimicrob Agents Chemother ; 64(7)2020 06 23.
Article in English | MEDLINE | ID: covidwho-191429

ABSTRACT

Drug repositioning is the only feasible option to immediately address the COVID-19 global challenge. We screened a panel of 48 FDA-approved drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which were preselected by an assay of SARS-CoV. We identified 24 potential antiviral drug candidates against SARS-CoV-2 infection. Some drug candidates showed very low 50% inhibitory concentrations (IC50s), and in particular, two FDA-approved drugs-niclosamide and ciclesonide-were notable in some respects.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Drug Repositioning , Niclosamide/pharmacology , Pneumonia, Viral/drug therapy , Pregnenediones/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical/methods , Humans , Pandemics , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL